11,813 research outputs found

    Renormalization in a Lorentz-violating model and higher-order operators

    Full text link
    The renormalization in a Lorentz-breaking scalar-spinor higher-derivative model involving Ï•4\phi^4 self-interaction and the Yukawa-like coupling is studied. We explicitly de- monstrate that the convergence is improved in comparison with the usual scalar-spinor model, so, the theory is super-renormalizable, with no divergences beyond four loops. We compute the one-loop corrections to the propagators for the scalar and fermionic fields and show that in the presence of higher-order Lorentz invariance violation, the poles that dominate the physical theory, are driven away from the standard on-shell pole mass due to radiatively induced lower dimensional operators. The new operators change the standard gamma-matrix structure of the two-point functions, introduce large Lorentz-breaking corrections and lead to modifications in the renormalization conditions of the theory. We found the physical pole mass in each sector of our model.Comment: 20 pages, 5 figures. New version with modifications in the renormalized Lagrangian. To be published in EPJ

    Some Extended Classes of Distributions: Characterizations and Properties

    Get PDF
    Based on a simple relationship between two truncated moments and certain functions of the th order statistic, we characterize some extended classes of distributions recently proposed in the statistical literature, videlicet Beta-G, Gamma-G, Kumaraswamy-G and McDonald-G. Several properties of these extended classes and some special cases are discussed. We compare these classes in terms of goodness-of-fit criteria using some baseline distributions by means of two real data sets

    On the duality in four-dimensional Lorentz-breaking field theories

    Full text link
    We consider new issues of duality in four-dimensional Lorentz-breaking field theories. In particular, we demonstrate that the arising of the aether-like Lorentz-breaking term is necessary in order for the 4D models to display the duality analog between the MCS and self-dual models in 3D. We further study the dispersion relations in both theories and discuss the physical contents of the models involved in this new dualilty.Comment: 16 page

    Dynamical Lorentz and CPT symmetry breaking in a 4D four-fermion model

    Full text link
    In a 4D chiral Thirring model we analyse the possibility that radiative corrections may produce spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that the chiral current ψˉγμγ5ψ\bar\psi\gamma^{\mu} \gamma_5 \psi may assume a nonzero vacuum expectation value which triggers the Lorentz and CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically induce a bumblebee like model containing a Chern-Simons term.Comment: Small modifications in the text and new references added, 12 pages, 4 figures, revtex4. To appear in Phys. Rev.

    On the induction of the four-dimensional Lorentz-breaking non-Abelian Chern-Simons action

    Full text link
    A four-dimensional Lorentz-breaking non-Abelian Chern-Simons like action is generated as a one-loop perturbative correction via an appropriate Lorentz-breaking coupling of the non-Abelian gauge field to the spinor field. This term is shown to be regularization dependent but nevertheless it can be found unambiguously in different regularization schemes at zero and finite temperature.Comment: accepted version in Physical Review
    • …
    corecore